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Abstract. Vehicles with multiple compartments are used, among others, for distribution to
convenience stores. Based on the convenience stores paradigm we propose optimization models
for two possible cargo space layouts and explore their characteristics through computational
experiments with randomly generated data sets. In a small real data set an optimal solution of one
of the models requires fewer vehicles because compartment capacities are utilized more tightly.
We develop and test approximation schemes based on Lagrangean Relaxation that generate good
feasible solutions in reasonable time. The good quality of the solutions is guaranteed by the gap
between their value and the Lagrangean Relaxation bound. These schemes could be valuable for
large real applications.

1. Introduction

Distribution with motor vehicles is one of a number of modes of transportation used
by firms to deliver goods to their customers. It requires scheduling of some of the
firm’s resources, i.e., vehicles and personnel, on a routine basis. The principal
considerations when scheduling deliveries of goods are customer satisfaction and
costs of distribution. Improving the efficiency of distribution can have a big impact
for the firm and the economy as a whole, since physical transportation of goods is
currently equivalent to about 10% of the U.S. Gross Domestic Product [13]. (This is
only demonstrative of relative magnitude since GDP, a net input-output figure, is not
directly comparable to transportation expenditure, a gross amount [14].) Optimi-
zation or other methods that have been developed by academic researchers and
private practitioners for improving the efficiency of distribution with motor vehicles
are described by the term Vehicle Routing. Christophides [10], Golden and Assad
[31] and more recently Fisher [23] have provided comprehensive surveys on vehicle
routing.

Optimization models for vehicle routing must encompass the real-world need for
accuracy, implementability and speed of computation, without losing sight of the
value of model simplicity and theoretical soundness. Bell et al. [4] describe an
on-line system for vehicle scheduling and routing for distribution of industrial gases;
the system is based on a mixed integer programming model and Lagrangean
Relaxation is used to provide near-optimal delivery schedules.

The level of complexity of vehicle routing problems treated by optimization
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methods has been ever increasing. Among others, Desrosiers et al. [18], Desrosiers
et al. [17], Desrochers et al. [16], Desrochers et al. [15], Kolen et al. [38] have been
studying vehicle routing problems where deliveries to customers must be done
within specified time windows. Dror et al. [19] and Laporte et al. [40] consider
problems in which customer demands and travel / service times, respectively, are
treated as stochastic. Laporte et al. [39] study the problem of simultaneously
locating a depot, determining fleet size and designing a set of routes through a set of
customers whose demands are random.

1.1. VEHICLES WITH MULTIPLE COMPARTMENTS

Vehicles with multiple compartments is a variation of the standard vehicle routing
problem that has been mentioned [10, 23] but, to our knowledge, never directly
addressed in optimization models in the past. The rationale for using vehicles with
multiple compartments is to be able to carry products of different temperature or
composition in the same vehicle. There are at least two applications in which
vehicles with multiple compartments are used, i.e., transportation of petroleum
products and deliveries of food and grocery items to convenience stores. In this
study we will concentrate on the latter, while we will only briefly describe the
former in the following paragraph.

Marine vessels that transport petroleum products from refineries to customers
have multiple compartments that can carry more than five different products
together in a single trip. Trucks that carry liquid fuels have divided tanks that can
hold fuelds of different types, for example, gasoline of different grades. Since
accidental mixing of fuel types can be hazardous, compartments are fixed and very
well separated from each other, preferably with double bulkheads. Miller [43]
considers scheduling of a tanker fleet that deliver gasoline antiknock compounds to
distribution and customer terminals around the world. Tankers have eight to ten
compartments and typically carry six or seven products. The problem can be
modeled as a space-time network, but cannot be solved by optimization methods,
due to the large number of nodes and arcs involved.

The rest of the paper is organized as follows: In Section 2 we describe the
operation of distribution to convenience stores. In Section 3 we propose two models
for scheduling deliveries to convenience stores and we show how the formulation of
the models can be tightened by appending certain logical constraints. A critique of
the models, and preliminary experimentation is presented in Section 4. In Section 5
we present Lagrangean Relaxations, a Lagrangean Substitution and a Lagrangean
heuristic based on the first model. In Section 6, we present computational experience
with them. Conclusions are discussed in Section 7. The procedure for generating
random test problems is presented in the Appendix.

2. Distribution to convenience stores

Convenience stores represent the fastest growing segment of the food retail industry.
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Oil companies are the most recent entrants in the field, that has traditionally been the
domain of nationwide chains like Southland’s 7–11 stores and more regional ones,
like for example Wawa stores in the Mid-Atlantic states. Oil companies have been
gradually transforming their gas stations from strictly fuel dispensing units to small
or medium sized supermarkets or even food courts by subletting space to companies
like Subway or Burger King. Some try to create a brand image for their stores like
Sunoco’s A-plus. Others enter the field through alliances, like Citgo’s with
Southland. The economic motivation behind this is clear: convenience store retailing
carries much higher margins than fuel.

Convenience stores are of relatively small size and have extended hours of
operation. Their purpose is to offer mainly grocery and food items to consumers
outside regular business hours or to motorists on highways and isolated locations.
Unlike in a supermarket that typically has large storage spaces in the back, a
convenience store carries most of its inventory in the front of the store. These space
limitations impose the need for very tight control of inventories (Weinstein [47])
and this is the main reason why convenience store orders must be small, and served
by a single distributor that can deliver dry, refrigerated and frozen items together in
the same truck. In contrast, a supermarket places large orders, often to more than
one distributor that can deliver items at various temperatures separately in different
trucks.

Another concern that makes delivery of mixed orders in a single truck to
convenience stores preferable is that of practicality. Supermarkets typically have
special doors and facilities in the back, so that trucks can be unloading without
interfering with consumers or other functions of the business. Most convenience
stores do not have doors for unloading in the back, therefore all orders have to be
delivered through the front door. Clearly, when only one truck delivers instead of
two or three, the inconvenience is minimized.

Vehicles for deliveries to convenience stores have a cooling unit (e.g., Thermo
King, Frigidaire) attached to the top front end of the cargo space behind the driver’s
cabin. In addition to the main back door, vehicles often have one or more side
access doors. They may or may not have separate spaces or compartments to hold
items at different temperatures. A compartment can often be as simple as a box
filled with dry ice. In larger trucks, compartments are formed by separating spaces
using bulkheads that can be fixed or movable. Movable bulkheads slide along
special rails in the inside walls of the truck to allow the volume capacity of
compartments to vary according to the cubic volume of the items they must hold
during a trip. The movement of bulkheads is often limited by the position of side
doors.

Our experience shows that convenience store distributors either deliver mixed
orders in undivided trucks or divide the truck cargo using boxes and bulkheads,
fixed or movable, in a variety of ways and in many creative combinations. The four
most common layouts seem to be the following:

• No boxes or bulkheads: Air from the cooling unit keeps the front of the cargo
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space at a freezing temperature. It dissipates and becomes warmer in the moddle
while leaving the back at ambient temperature. Therefore, frozen, refrigerated and
dry items are loaded in sequence from front to back.

• Two boxes: Filled with dry ice, they hold frozen and refrigerated items while the
cooling unit is switched off. Most common when the average non-dry volume is
small.

• Bulkhead and box: A frozen compartment is separated out in front and a small
volume of refrigerated items is carried in a box with dry ice. For access to the
frozen compartment, a side door is placed as near as possible to the front end of
the cargo space to allow maximum flexibility in sizing the compartment.

• Two bulkheads: They divide the cargo space in a frozen, a refrigerated and an
ambient temperature compartment. Cool air that enters from the frozen compart-
ment through special vents on the front bulkhead keep the refrigerated compart-
ment at the appropriate temperature. This layout has the disadvantage of requiring
two side doors, thus limiting the flexibility in varying compartment sizes.

Belardo et al. [3] describe a decision support system that helps schedulers create
routes for trucks that deliver to convenience stores; however this system does not
use any optimization model.

3. Models for scheduling deliveries to convenience stores

The basic vehicle routing problems involves two types of decisions: (i) Assigning
customers to routes or trips to be served by trucks and (ii) determining the sequence
in which customers assigned to the same route will be visited by the truck that
serves the route. Due to its complexity, the first approaches for the vehicle routing
problem were simple heuristics, the more representative being the ones by Clarke
and Wright [12], Christophides and Eilon [11], Gillet and Miller [30] and their
variations. Other heuristics find fairly good feasible solutions for the vehicle routing
problem by solving to optimality a mathematical program that is a suitable
approximation to it. Heuristics of this type are the generalized assignment heuristic
by Fisher and Jaikumar [24], the heuristic based on solving a set partitioning
problem, proposed by Balinski and Quandt [2] (see also Foster and Ryan [25]), and
asymptotically optimal heuristics based on probabilistic analysis results, by
Haimovich and Rinnooy Kan [35] and Bramel et al. [6]. Algorithms that find
optimal solutions to the vehicle routing problem were proposed by Laporte et al.
[41] and Fisher [22], among others.

Our approach is similar to the generalized assignment heuristic for vehicle
routing [24]. Our models for scheduling deliveries to convenience stores will be
addressing only the first type of decisions involved in the vehicle routing problem,
i.e., assigning customers to routes to be served by trucks, and therefore can be the
first stage of heuristics for the vehicle routing problem with multiple compartments.
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Once an assignment of customers to vehicles is found by solving these models to
optimality or near-optimality, the sequencing of customers in a route can be
determined by any traveling salesman algorithm.

We propose two integer programming models, described in the following
subsections and show how they can be tightened by appending certain logical
constraints. The first model assumes that the whole fleet will be using the two boxes
layout, while the second assumes that the one bulkhead and one box layout will be
used throughout the entire fleet. In a real application, many different layouts could
coexist in the same fleet and same-layout subfleets can be identified. Lagrangean
schemes presented in this article will be based on the two boxes layout model.

3.1. A 0–1 PROGRAMMING MODEL FOR THE TWO BOXES LAYOUT

The notation defined here will be used in the rest of the paper. Let 3 be an
optimization problem. Then OV(3 ), OS(3 ) and FS(3 ) denote the optimal value,
optimal solution set and feasible solution set of 3 respectively. If 3(p) is an

˜optimization problem depending on parameter p, then V(OV(3(p ))) denotes the
˜value of the optimal value of 3(p) for p 5p. iBi denotes the Euclidean norm of a

¯vector B. If 3 is an integer programming minimization problem and 3 its linear
programming relaxation then we define the integrality gap to be:

¯:Integrality Gap (%) 5 100 p (OV(3 )2OV(3 )) /OV(3 )

A fleet of vehicles operating from a single depot delivers food and groceries to a
set of customers. Customer orders consist of three types of items: frozen,
refrigerated and dry. The two boxes layout is used in all vehicles of the fleet and
boxes will be referred to as compartments. We make the following assumptions:

1. Customer orders may consist of one, two or all three types of items.
2. Weight and volume capacity of each vehicle must not be exceeded. Volume

capacity of each compartment must not be exceeded.
3. Visits by multiple vehicles to each customer are not allowed; the order of each

customer must be delivered by exactly one vehicle. It follows that all types of
items in a customer’s order must be loaded in the appropriate compartment of the
same vehicle.

4. Each vehicle can deliver to one or more customers during a single trip from the
depot.

5. The weight of each customer’s order is assumed to be small compared to the
weight capacity of each vehicle. Also the volume of each part of a customer’s
order is assumed to be small compared to the volume capacity of the space on
which it must be loaded, i.e. the compartments and the remaining space of the
vehicle.

6. The design of the groceries packages is such that integral numbers of items can
be loaded onto any space of the vehicle, utilizing the full capacity of the space or,
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at worst, with an insignificant loss in capacity. Similarly, the refrigerated and
frozen compartments are designed to fit onto a truck without creating inconveni-
ently narrow spaces that cannot be used.

We distinguish between two types of costs in the delivery operation:

Delivery costs: They depend on the distance traveled by each vehicle along its
assigned route. They are assumed to consist primarily of fuel expenditure, tolls,
personnel compensation, vehicle maintenance and depreciation. Delivery costs are
minimized when the total distance traveled by the whole fleet is minimal.

Cooling costs: They are the costs for keeping non-ambient temperature items at the
appropriate temperatures during delivery. They are assumed to consist of mainte-
nance and depreciation costs of refrigerating and freezing equipment as well as cost
of energy for maintaining low temperatures. Cooling costs are minimized when the
minimal required number of compartments for non-ambient temperature items is
used.

The problem is to find an assignment of customers to vehicles such that all customer
demands are satisfied and the sum of delivery and cooling costs is minimal.

Delivery costs are a function of the sum of the distances traveled directly
between two customers. Therefore, we do not know the minimal delivery costs
before we find the optimal solution to the vehicle routing problem, part of which is
the problem we are considering here. In order to find an assignment of customers to
vehicles that is close to being optimal we need to have a good aproximation of the
delivery costs in terms of costs of assigning a customer to a vehicle. Fisher and
Jaikumar [24] have developed heuristic methods for approximating the optimal
delivery costs. We adapt their method for approximating delivery costs.

We formulate the delivery scheduling problem with the two boxes layout as a 0-1
programming problem. Our notation is summarized below. A symbol referring to a
set denotes the set itself as well as its cardinality.

I: set of available vehicles
K: set of item types, K 5 hA, R, Fj
K : set of non-ambient temperature items, K 5 hR, Fj2A 2A

J: set of customers
K : set of item types in the order of customer j, ; j [ Jj

J : set of customers who have ordered item type k, ;k [Kk

g : total weight of the order of customer j, ; j [ Jj

w : total weight of items of type k, ;k [K in the order of customer j, ; j [ Jjk j

t : total volume of items of type k, ;k [K in the order of customer j, ; j [ Jjk j

c : delivery cost; cost of assigning customer j, ; j [ J, in the route to be servedij

by vehicle i, ;i [ I
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p : weight of compartment for items of type k, k [Kk 2A

r : volume of compartment for items of type k, k [Kk 2A

q : volume capacity of compartment for items of type k, k [Kk 2A

e : cooling cost; cost of compartment for items of type k, k [Kk 2A

b : weight capacity of vehicle i, ;i [ Ii

d : volume capacity of vehicle i, ;i [ Ii

Very often all vehicles in the fleet have the same weight and volume capacities
(b 5 b, d 5 d), and we will treat them as such in our computational experiments.i i

The decision variables of the optimization model are 0-1 variables defined as
follows:

1 , if customer j, ; j [ J is assigned to vehicle i, ;i [ I
z 5Hij 0 , otherwise .

1 , if a compartment for items of type k, k [K is added2A

on vehicle i, ;i [ Iy 5ik 5
0 , otherwise.

The formulation of the delivery scheduling problem with the two boxes layout as
a 0-1 integer programming problem is the following:

DSP1

Minimize O O e y 1O O c zk ik ij ij
i[I k[K i[I j[J2A

subject to

(S) O z 5 1 , ; j [ Jij
i[I

(W ) O p y 1O g z < b , ;i [ Ik ik j ij i
k[K j[J2A

(CV ) O t z < q y , ;i [ I, ;k [Kjk ij k ik 2A
j[Jk

(VV ) O r y 1 O t z < d , ;i [ Ik ik jA ij i
k[K j[J2A A

(I1) z [ h0, 1j , ;i [ I, j [ Jij

(I2) y [ h0, 1j , ;i [ I, k [Kik 2A

By constraints (S), each customer must be assigned to exactly one route, or the
whole order of each customer has to be delivered by exactly one vehicle. By
constraints (W ), the weight capacity of each vehicle cannot be exceeded. Constraints
(CV ) state that the volume capacity of each compartment cannot be exceeded given
that such a compartment has been added onto a vehicle. Constraints (VV ) state that
the volume capacity of the vehicle cannot be exceeded.
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3.2. A MIXED INTEGER PROGRAMMING MODEL FOR THE ONE PARTITION AND ONE BOX

LAYOUT

The same assumptions hold here as in the previous subsection except that the one
partition and one box layout is used. We will use the notation defined in the previous
subsection except that we also need to define some additional notation:

max minr , r : maximum and minimum volume of the frozen compartment.F F
max minq , q : maximum and minimum volume capacity of the frozen compartmentF F

r : volume of the bulkhead of the frozen compartment.B

Also in the present subsection, p is essentially the weight of the bulkhead. It isF
min min max maxeasy to see that r 5 q 1 r and r 5 q 1 r . The decision variables usedF F B F F B

in the previous model will also be used here. However, since volume capacity of the
frozen compartment is not fixed, we introduce a new decision variable:

v : volume capacity of the frozen compartment.i

Another approximation we have implicitly made here is that e , that is the cost ofF

the frozen compartment, is constant for each vehicle, while a principal determinant
of these costs, that is, the volume of frozen merchandise, may vary across vehicles.
This is only a minor deviation from reality, since in the real application, cooling
costs represent only a small portion of delivery costs.

The formulation of the delivery scheduling problem with the one partition and
one box layout as a mixed integer programming problem is the following:

DSP2

Minimize O O e y 1O O c zk ik ij ij
i[I k[K i[I j[J2A

subject to

(S) O z 5 1 , ; j [ Jij
i[I

(W ) O p y 1O g z < b , ;i [ Ik ik j ij i
k[K j[J2A

(RV ) O t z < q y , ;i [ IjR ij R iR
j[JR

max(FV ) O t z < q y , ;i [ IjF ij F iF
j[JF

(V1) r y 1 r y 1 v 1 O t z < d , ;i [ IR iR B iF i jA ij i
j[JA

(V2) O t z < v , ;i [ IjF ij i
j[JF
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min(V3) q y < v , ;i [ IF iF i

max(V4) v < q y , ;i [ Ii F iF

(I1) z [ h0, 1j , ;i [ I, j [ Jij

(I2) y [ h0, 1j , ;i [ I, k [Kik 2A

(C) v > 0 , ;i [ Ii

Constraints (C) and (W ) have the same meaning as in model (DSP1). Constraints
(RV ) state that the volume capacity of the refrigerated compartment should not be
exceeded. Constraints (FV ) state that the volume of frozen merchandise cannot
exceed the maximum volume capacity of the frozen compartment. Constraints (V1)
state that the total volume capacity of the truck cannot be exceeded. Constraints
(V2) state that the actual volume of frozen merchandise can be at most as large as
the (variable) volume capacity of the frozen compartment. By constraints (V3) and
(V4), the volume capacity of the frozen compartment, if one is added in a vehicle,
must be between the minimum and the maximum volume capacity of the frozen
compartment of the truck.

3.3. MODEL TIGHTENING

Certain logical constraints can be appended to either (DSP1) or (DSP2) resulting in
a tighter formulation. The following constraints (L1) are derived as implications of
constraints (CV ), (I1) and (I2). They state that a customer j whose order includes
items of type k [K , cannot be assigned to vehicle i, unless a compartment for2A

items of type k is added to the vehicle:

(L1) z < y , ;i [ I, j [ J , k [Kij ik k 2A

Constraints (L1) are not necessary in the description of the model; they are
implications of other constraints already present in the formulation and are
implicitly satisfied by all feasible solutions of the problem. However, writing and
enforcing them explicitly, could result in tighter linear programming bounds and
consequently a reduction in the number of nodes of branch-and-bound algorithms
for solving the problem to optimality. Furthermore, these constraints may result in
improved lower bounds and feasible solutions if they are used in Lagrangean
bounding/heuristic schemes.

3.4. A NOTE ON THE DERIVATION OF DELIVERY COSTS cij

It was mentioned earlier that the delivery cost c of assigning customer j to a routeij

traveled by vehicle i is estimated as an approximation of the optimal cost of the
associated vehicle routing problem. The method we use to estimate the delivery
costs is an adaptation of one of the methods proposed by Fisher and Jaikumar [24].
A brief description of the method we are using follows.

Let (r , u ) be the polar coordinates of customer j on the plane, whose origin isj j
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occupied by the depot. We assume that customer indices in J are sorted by order of
increasing angle u . The plane is partitioned into J customer cones. Customer conesj

are formed such that the infinite half ray forming the boundary between customer
cones j and j 1 1 bisects the angle (u 2u ), formed by the half rays throughj11 j

customers j and j 1 1. We associate the total weight g of the order of customer jj

with customer cone j. We assume that the weight capacity of all vehicles is the same
b 5 b, ;i [ I. We definei

O gj
j[J
]]g5 I 3 b

that is, the fraction of the weight capacity of each vehicle that would be used under
the fictitious assumption that orders are allocaed to vehicles in such a way that all
vehicles are loaded up to exactly the same weight. Vehicle cones are then formed
from a contiguous group of customer cones or fractions of customer cones such that
the weight within each vehicle cone equals g 3 b. We select a seed point with polar
coordinates (t , d ) in vehicle cone i. Seed point i lies on the infinite half ray thati i

bisects customer cone i. Its distance t from the origin is chosen such that the totali

weight included inside the vehicle cone through t is 0.753g 3 b. We assume thati

the total weight within customer cone i is evenly distributed within the sector of
radius r , that is the distance of the customer who is the remotest from the depotmax

among those who are located in customer cone i. Under this simplifying assumption
we can determine t asi

2 2
t /r 5 0.75 ⇒t ¯ 0.8663r .i max i max

Delivery cost c then is computed asij

c 5r 1 d 2tij j ij i

where
]]]]]]]]2 2d 5 r 1t 2 2r t cos(u 2d ) .ij j i j i j iœ

We describe the procedure for generating random test problems in the Appendix.
After delivery costs c are determined, cooling costs e are set appropriatelyij k

following a principle that the ratio of cooling to delivery cost per vehicle must equal
a specified value.

4. Critique of the (DSP1) model and preliminary experimentation

In this section we discuss features of the (DSP1) and (DSP2) models that make
them attractive both from a computational and a modeling point of view. Branch-
and-bound algorithms for either (DSP1) or (DSP2) can be speeded up by exploiting
the powerful concept of double contraction. In Subsection 4.1 we discuss double
contraction for (DSP1); the analysis and computational results would be similar for
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(DSP2). In Subsection 4.2 we discuss modeling issues addressed by (DSP1) and
(DSP2). Subsections 4.3, 4.4 and 4.5 contain experimental results with randomly
generated problems, real data, and a large real-like instance, respectively. In
Subsection 4.6 we investigate the effect of appending constraints (L1) in strengthen-
ing the linear programming bound and speeding up branch-and-bound algorithms for
solving the problem to optimality.

4.1. DOUBLE CONTRACTION AND THE (DSP1) MODEL

Double contraction is described in Spielberg [46] and Guignard and Spielberg [33]
as a measure of merit of a 0-1 variable with regard to branching. A 0-1 variable is
said to be double contracting if fixing it to either 0 or 1 reduces the collective
feasibility range of the remaining unfixed variables of an integer programming
problem, without necessarily forcing other variables to be fixed to some value. It
becomes evident that giving higher branching priorities to double contracting
variables results to a considerable reduction of nodes in a branch-and-bound tree.
Guignard and Spielberg [34] showed how the number of nodes of the branch-and-
bound tree as well as the computation times can be dramatically reduced by giving
high branching priorities to double contracting variables when solving a mixed
integer problem for harvest scheduling and transportation planning in forest
management.

Variables y of (DSP1) are double contracting. Indeed, constraints (W ) ofik

(DSP1) imply the following cover inequalities:

(C) O y 1O z < n , ;i [ Iik ij
k[K j[J2A

i iwhere n is an integer such that n < n < uK u1 uJu, and n is the cardinality of them 2A m

minimal cover of (W ) for each i [ I. Also constraints (CV ) imply:

(L) O z < uJ uy , ;i [ I, k [K .ij k ik 2A
j[Jk

If for some k*[K and i*[ I, y is fixed to 0, by (L) this results to fixing of2A i*k*

z to 0 for all j [ J . If on the other hand y is fixed to 1, by (C) we obtain thei*j k* i*k*

following ‘tighter’ inequality on the remaining unfixed variables:

(C9) O y 1O z < n 2 1 .i*k i*j
j[Jk[K / hk*j2A

In subsections 4.3 and 4.4, and the tables referenced within, we show how the size
of the branch-and-bound tree and CPU times are dramatically reduced by giving
higher branching priorities to y variables.ik

4.2. MODELING ISSUES ADDRESSED BY (DSP1)

The generalized assignment heuristic [24] considers only a single resource (e.g.,
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weight or volume) whose availability is limited on the vehicles. In delivery with
multiple compartments we need to consider both weight and volume limitations on
the vehicles and volume limitations in each separate compartment. In this respect
(DSP1) captures both weight and volume limitations in a rather efficient way
without the need to introduce too many binary variables.

An interesting feature of the model is that by penalizing the use of compartments
one not only helps determine a feasible delivery schedule using the smallest possible
number of compartments but one that can possibly require fewer vehicles than are
available. In contrast, the delivery cost structure of the generalized assignment
heuristic incents the model to use all available vehicles.

The presence of multiple resource constraints in (DSP1) gives the model a
multi-resource generalized assignment problem structure. The latter problem has
been studied by Gavish and Pirkul [28], who have proposed non-Lagrangean based
as well as Lagrangean heuristics and a branch and bound algorithm that have solved
medium sized instances of the problem in reasonable times.

(DSP2) has a more complex structure but offers more flexibility in the allocation
of capacities, that would allow better assignments of customers to trucks. We
compare the solutions that (DSP1) and (DSP2) give on the same random and real
data in the following subsections.

4.3. EXPERIMENTATION WITH RANDOMLY GENERATED DATA

We test the model, solving a set of small randomly generated test problems. The
common characteristics of the test problems are shown in the upper part of Table 1.

Table 1. Values of the random test problem parameters

Parameter Two boxes One partition-one box

Value

J 25
b (100 lbs) 300i

d (10 cuft) 450i

p (100 lbs) 10R

p (100 lbs) 15F

r d /3 d /64 d /2R i i i

r d /3 d /3F i i

q 0.903 rR R

q 0.853 rF F

r (miles) 1min

r (miles) 40max

I 3, 4, 5, 6, 7
p 0.30, 0.40, 0.50, 0.60, 0.70, 1.00
r ¯ 0.05, 0.10, 0.20, 0.30, 0.40, 0.50P / D
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The variable charactristics of the problem are: (1) number of vehicles I, (2)
percentage p of customers who have ordered all three item types, (3) ratio r ofP / D

cooling cost per vehicle to delivery costs per vehicle. Their ranges are shown in the
lower part of Table 1.

The problems were generated to have volume capacity utilization (load factor)
comparable to that of the real problems described in the next subsection. We define
load factor as the ratio of the total volume of customer orders to the total volume
capacity of the fleet. Load factors for the random problems range from 30.2%
(problem 9) to 44.3% (problem 11).

Picking different combinations of values for the problem parameters from Table
1 allows the generation of hundreds of random problem instances. We experimented
with a good portion of all the possible instances; in Tables 2–4 we show results of
solving selected non-trivial problems using (DSP1). Test problems were generated
by a portable random problem generator written in FORTRAN. The random
problem generator is described in Appendix A. We used the GAMS modeling
system [7] in our experiments. The random problem generator produces as output a
GAMS model that can be solved by a variety of available MIP solvers. We solved
all random problems to optimality using GAMS/OSL on an IBM RISC6000
workstation.

These experiments have revealed some key characteristics of the (DSP1) model.
Problem size can increase rapidly as the number of customers, and the number of
vehicles to serve them, becomes larger. Even for these small problem instances, the
integrality gap is large. A method that can give us better approximations that the
linear programming relaxation is Lagrangean Relaxation (see Fisher [20, 21],
Geoffrion [29], Held and Karp [36, 37], and Shapiro [45] among others).

Another interesting characteristic of the model is that it can naturally find, i.e.,
without a need to force it through constraints, the smallest possible number of
vehicles for a feasible assignment, I*, that is shown in the third column of Tables
2–4. Since delivery costs are computed based on the assumption that exactly I
vehicles are used, if the optimal assignment has I*, I, delivery costs need to be
recomputed with I set to I* and the problem must be solved again using the new
costs. We chose some random problems of which the optimal (DSP1) solution
requires I*, I vehicles. We recomputed the delivery costs with I* vehicles and
solved the problems again. Table 5 shows the results of these experiments. The
optimal (DSP1) costs in all cases are smaller when delivery costs are computed with
I* seed points. This was expected, since when I* seed points are used, the delivery
costs are better approximations of the actual optimal vehicle routing costs. Figures 1
and 2 show the optimal DSP1 assignments of customers to vehicles, and the optimal
routes with I and I* seed points, respectively, for problem 4 shown in Tables 2 and
5. The better (DSP1) optimal solution in the latter corresponds to a better feasible
solution for the vehicle routing problem.

Finally, the last four columns of Tables 2–4 show how the number of nodes and
CPU times are dramatically reduced when higher priorities are given by the user to
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variables y , compared to solving the model having the solver set prioritiesik

internally.
We obtained optimal solutions for the randomly generated data sets using

(DSP2). In almost all problems (DSP2) gave solutions of lower cost than (DSP1),
because it allows more flexibility in allocating capacities. The optimal costs of the

Table 5. Results when delivery costs are computed with I and I* seed points

Prob. I I* Seed points used for delivery cost computation
no.

I I*

LP IP Integrality LP IP Integrality
bound optimum gap (%) bound optimum gap (%)

3 5 4 334.030 468.950 28.8 330.756 452.582 26.9
4 6 4 348.701 480.852 27.5 374.645 460.391 18.6
5 7 5 421.830 551.929 23.6 423.231 549.582 23.0
6 5 4 353.854 475.023 25.6 326.040 428.017 23.8

13 5 4 229.913 318.950 27.9 226.645 302.582 25.1

Figure 1. Optimal DSP1 assignment of dustomers to vehicles when I seed points are used.
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Figure 2. Optimal DSP1 assignment of customers to vehicles when I* seed points are
used.

randomly generated problems with (DSP2) can be seen in the last column of Tables
2–4.

4.4. EXPERIMENTS WITH REAL DATA

Real data were obtained from a company that specializes in distribution to
convenience stores. The company operates a warehouse in Lancaster, Pa. On an
average day, their fleet of 45 vehicles serves about 240 customers. We were given
data for five routes prepared by a dispatcher, including locations of customers, and
weights and volumes of the frozen and dry parts of their orders. The number of
customers in these routes is 44, that is one-fifth to one-sixth of the total number of
customers served in a typical day. We were also given the weight and volume
capacities of the box for frozen items and that of the remaining space for dry items,
assuming that the box has a fixed capacity. The main difference between these and
the randomly generated data is that in the former, the customers are clustered while
in the latter, they are uniformly distributed on the plane. Because of this peculiarity
of the data, automatic seed setting gives poor locations for seeds. Therefore, we
choose seeds manually, such that they coincide with customer locations within
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clusters. The load factor of the real delivery schedule is a low 29.9%, i.e., capacities
of the vehicles are not very tightly utilized.

A brief description of the spatial distribution of customers and their allocation to
routes follows. There are 10 customers in Connecticut, nine of which form a cluster
in the Hartford area and one is in Bridgeport. There is one customer in Dayton, New
Jersey, seven in east Maryland, and 26 in Pennsylvania, of which 10 form a cluster
west of Harrisburg, three are in West Chester, two in Media, and 11 form a cluster in
the Greater Philadelphia area. The routes prepared by the dispatcher are as follows:

Route 1: Serves all 10 customers in Connecticut and the customer in New Jersey.
Route 2: Serves all seven customers in east Maryland.
Route 3: Serves all 10 customers west of Harrisburg.
Route 4: Serves eight customers in Philadelphia.
Route 5: Serves the three customers in West Chester, the two customers in Media
and the remaining three customers in the Philadelphia area.

We prepared the data for the (DSP1) model to be solved using GAMS with LAMPS
or OSL as MIP solvers. We experimented with the number of trucks assuming that
there are five, four, three or two trucks in the fleet. Delivery costs were computed
using five, four, three or two customers, respectively, as seed points. (DSP1) was
solved to optimality. When two trucks are available no feasible solution was found.
Table 6 summarizes the computational results with real data. It is worth mentioning
that integrality gaps of the real problem are even larger than those of the randomly
generated ones, ranging from 53 to 67%. The dramatic reduction of nodes and CPU
times when higher branching priorities are given to variables y is also evident here.ik

The last column of Table 6 gives the optimal solutions with (DSP2). In all three
problems the minimal costs with (DSP2) are better than with (DSP1), as was also
observed with the randomly generated data.

A description of the routes obtained follows.

4.4.1. Five available vehicles
The load factor using five vehicles is 29.9%. The furthermost customers in the
Hartford, Harrisburg and east Maryland clusters, one customer in West Chester and
one in Philadelphia were chosen as seeds. The optimal (DSP1) solution assigned
customers to only four routes as follows:

Route 1: Serves all 10 customers in Connecticut and the customer in New Jersey.
Route 2: Serves all seven customers in east Maryland.
Route 3: Serves all 10 customers west of Harrisburg, the three customers in West
Chester, the two customers in Media and one customer in the Philadelphia area.
Route 4: Serves 10 customers in the Philadelphia area.



SCHEDULING DELIVERIES IN VEHICLES WITH MULTIPLE COMPARTMENTS 61

T
ab

le
6.

E
xp

er
im

en
ta

l
re

su
lts

fo
r

th
e

re
al

di
st

ri
bu

tio
n

pr
ob

le
m

w
ith

va
ry

in
g

nu
m

be
r

of
av

ai
la

bl
e

ve
hi

cl
es

A
va

il.
/

(D
SP

1)
In

t.
V

ar
ia

bl
es

N
od

es
R

S6
00

0
C

PU
se

c
(D

SP
2)

us
ed

IP
ga

p
IP

ve
hi

cl
es

op
t.

(%
)

Pr
io

ri
tie

s
Pr

io
ri

tie
s

op
t.

O
n

O
ff

O
n

O
ff

5
/4

16
4.

44
4

67
.2

22
5

59
12

.
12

50
0

0.
91

0
.

50
0.

00
0

16
1.

35
2

4
/4

16
4.

44
4

67
.1

18
0

56
11

41
31

3
0.

70
0

10
93

.7
70

16
1.

35
2

3
/3

29
5.

37
8

52
.6

13
5

53
18

16
.

31
00

0
30

.9
10

.
80

0.
00

0
21

9.
39

5

T
ab

le
7.

E
xp

er
im

en
ta

l
re

su
lts

fo
r

th
e

la
rg

e
re

al
-l

ik
e

di
st

ri
bu

tio
n

pr
ob

le
m

A
va

il.
/

(D
SP

1)
In

t.
V

ar
ia

bl
es

C
on

st
ra

in
ts

N
od

es
J5

00
0

C
PU

se
c

(D
SP

2)
us

ed
IP

ga
p

IP
ve

hi
cl

es
so

l.
(%

)
Pr

io
ri

tie
s

Pr
io

ri
tie

s
so

l.

O
n

O
ff

O
n

O
ff

32
/3

2
12

22
.7

83
59

.9
11

29
7

44
9

.
50

10
0

.
12

90
00

10
0

K
1

10
0

K
1

10
50

.9
37



62 EMMANUEL D. CHAJAKIS AND MONIQUE GUIGNARD

4.4.2. Four available vehicles
When four vehicles are used, the load factor is 37.3%. The same seed points as
above except for the West Chester one were chosen. The optimal (DSP1) solution
assigned customers to the same four routes as above.

4.4.3. Three available vehicles
When three vehicles are used the load factor is 49.8%. The furthermost customers in
the Hartford, Harrisburg and east Maryland clusters were chosen as seeds. The
optimal (DSP1) solution assigned customers to three routes as follows:

Route 1: Serves all 10 customers in Connecticut, the customer in New Jersey, one
customer from the Harrisburg cluster and four customers in Philadelphia.
Route 2: Serves all seven customers in east Maryland, two customers in Philadel-
phia and one customer west of Harrisburg.
Route 3: Serves eight customers west of Harrisburg, the three customers in West
Chester, the two customers in Media and six customers in the Philadelphia area.

When three trucks are available the total distance traveled by the fleet is larger than
in the four- and five-vehicle cases, because of poor routes found. Forcing the model
to use three vehicles by making only that many available, as opposed to letting it
naturally find an optimal three-vehicle solution when more are available, produced a
solution of poor quality.

4.5. EXPERIMENTS WITH A LARGE REAL-LIKE INSTANCE

We sought to test the models on an instance in the order of magnitude of the
distribution company’s daily operation of serving 240 customers. Instead of
generating large random instances, in which customer locations would be uniformly
distributed on the plane rather than clustered as in reality, we created one from the
44-customer real instance. For each customer in that instance, we created seven
more customers whose orders’ weight and volume by temperature were normally
distributed around those of the original customer with 10% of those as standard
deviation. One duplicate customer was located 5% of the maximum radius to the
southeast of the original; two were located 1.25 and 6.25% of the maximum radius
southeast of the symmetrical image of the original customer with respect to the
east–west axis; two were located 2.50 and 7.50% of the maximal radius southeast of
the symmetrical image of the original customer with respect to the north–south axis;
and two were located 3.75 and 8.75% of the maximum radius southeast of the
symmetrical image of the original axis with respect to the depot. Thus we created a
352-customer instance, almost 50% larger than the distribution company’s daily
problem. Since we found good 4-vehicle solutions to the 44-customer instance, we
sought to serve the large instance with 32 vehicles and computed delivery costs
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using 32 customer locations as seed points. We used Microsoft Excel to generate the
large instance, which has a load factor of 37.0%.

We solved the problem with CPLEX 7.0 through GAMS on a Hewlett-Packard
J5000; cliques and covers are generated at each branch-and-bound node. Because of
the large size of the problem, we did not expect to solve it to optimality. We show
on Table 7 the solution found after 100 000 CPU seconds.

4.6. MODEL TIGHTENING

As experiments with randomly generated and real problems show, (DSP1) has
relatively large integrality gaps. Appending constraints (L1) to (DSP1) and solving
the augmented model, has resulted in stronger linear programming bounds (smaller
integrality gaps) and consequently fewer branch-and-bound nodes for solving
problems to optimality, or finding a good feasible solution to the large real-like
instance. Comparative results with the original and augmented (DSP1) are shown in
Tables 8 and 9. Randomly generated problems are numbered as in Tables 2–4. Real
problems 1, 2 and 3 consist of the set of 44 customers and five, four and three
available vehicles, respectively. Large is the 352-customer, 32-vehicle instance.

When solving the problems to optimality priorities to double contracting
variables are on. Results show that the augmented (DSP1) gives much stronger
lower bounds (smaller integrality gaps) than the original model. As a result of that,
the number of nodes needed to find the optimal solution is drastically smaller except
for Large, whose constraint matrix has about as many thousands of rows as columns
when the logical constraints are appended. However, the augmented model is
computationally more expensive. It needs considerably higher CPU times to
compute LP bounds and the time spent at each node of the branch-and-bound tree is
considerably larger; for random problems 5, 11 and 17 and real problems 2 and 3
the total OSL CPU time with the augmented model is larger than with the original
one despite the considerably smaller number of nodes in all of them but real
problem 3.

5. Lagrangean approximations for (DSP1)

We will use Lagrangean Relaxation, Substitution and Decomposition to develop
approximations for (DSP1). All approximations presented here are based on the
augmented (DSP1) model. In Subsection 1, we discuss Lagrangean Relaxations LR1
through LR4 and we outline a subgradient optimization algorithm for LR3, the one
that our computational experiments have shown to give the best tradeoff between
ease of computation and tightness of the obtainable bounds. In Subsection 2, we
discuss Lagrangean Decomposition LD and Lagrangean Substitution LS together
with the corresponding subgradient algorithms. In Subsection 3, we present a simple
Lagrangean heuristic.

The subgradient algorithms we use are of the traditional sort. We are aware of
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more sophisticated subgradient search algorithms (see for example Sen and Sherali
[44]). Nevertheless, we decided to keep the focus of this work on efficient solution
of subproblems and effective heuristics.

Lagrangean Relaxations ignore the assignment aspect of the model and induce
decompositions across vehicles. The Lagrangean Relaxation problem decomposes
into as many subproblems as there are vehicles in the fleet. Each subproblem is
constrained by the weight capacity of the corresponding vehicle and the volume
capacities of its compartments. Keeping all capacity constraints, as in LR4, yields
subproblems that can be hard to solve. In LR1, LR2 and LR3, some capacity
constraints are relaxed thus yielding easier subproblems.

In Lagrangean Decomposition LD and Substitution LS, the assignment aspect of
the model is not ignored but rather separated from the vehicle capacity aspect. Both
schemes decompose the problem into: (i) A single subproblem that addresses only
assignments of customers to vehicles ignoring vehicle weight and volume capacities.
(ii) One subproblem per vehicle that addresses only capacities on that vehicle. LD
and LS require I 3 (K 1 J 2 1) and I multipliers, respectively. We do not expect LD
or LS to yield much stronger lower bounds than the Lagrangean Relaxations because
the assignment subproblems usually has naturally integer solutions. However, they
could accommodate two Lagrangean heuristics as opposed to one for Lagrangean
Relaxations, therefore increasing the probability of yielding better feasible solutions.

Our Lagrangean heuristic attempts to find feasible solutions at each subgradient
iteration. It consists of fixing variables y to their optimal Lagrangean values,ik

solving the reduced problem to optimality, and if a feasible solution is found,
attempting to improve it. The heuristic can be used in any of our approximation
schemes.

5.1. LAGRANGEAN RELAXATIONS LR1, LR2, LR3 AND LR4

The first Lagrangean Relaxation LR1 is obtained if we relax constraints (S) with
multipliers u , ; j [ J, constraints (CV ) with multipliers l < 0, ;i [ I, k [Kj ik 2A

and constraints (VV ) with multipliers m < 0, ;i [ I. The resulting Lagrangeani

subproblem decomposes into I independent 0-1 knapsack problems with logical
constraints, similar to those in the LD1b decomposition for the PUMS problem,
presented in Guignard [32] (see also Lee and Guignard [42]). These subproblems
can be strengthened to Setup Knapsack Problems, described in Chajakis and
Guignard [9], by appending constraints (L2):

(L2) O z > y , ;i [ I, k [K .ij ik 2A
j[Jk

Constraints (L2) are redundant in the augmented (DSP1) model but not in the
Lagrangean subproblems. The Setup Knapsack Problem can be solved with a
number of efficient algorithms, presented in Chajakis and Guignard [9].

The second Lagrangean Relaxation LR2 is obtained if we relax constraints (S)
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with multipliers u , ; j [ J, and constraints (CV ) with multipliers l < 0, ;i [ I,j ik

k [K . The resulting Lagrangean subproblem decomposes into I independent2A

two-dimensional multi-knapsack problems, with logical constraints (L1), and can be
further strengthened with constraints (L2), thus becoming Setup Multi-Knapsack
Problems. Although efficient exact algorithms for multi-knapsack problems have
been developed by Gavish and Pirkul [27], and even more efficient algorithms for
the special case of two-dimensional knapsacks have been proposed by Freville and
Plateau [26], to our knowledge, no efficient algorithm exists for the Setup
Multiknapsack Problem.

The third Lagrangean Relaxation LR3 is obtained if we relax constraints (S) with
multipliers u , ; j [ J, and constraints (VV ) with multipliers m < 0, ;i [ I. We willj i

describe this scheme in more detail because our computational experiments have
shown that it gives the best tradeoff between ease of computation and tightness of
the obtainable bounds, among all four schemes we have examined. The resulting
Lagrangean relaxation LR3(u, m) of (DSP1) is:

LR3(u, m)

Minimize O O (2m r 1 e )y 1i k k ik
i[I k[K2A

O O (c 2 u 2m t )z 1O u 1O m dij j i jA ij j i i
i[I j[J j[J i[I

subject to (W ), (CV ), (L1), (I1) and (I2).

LR3(u, m) decomposes into I independent 0-1 multi-knapsack subproblems with
logical constraints, that can be strengthened to Setup Multi-knapsacks by appending
constraints (L2):

V(LR3(u, m))52O V(LR3 (u, m))1O u 1O m di j i i
i[I j[J i[I

where LR3 (u, m) is:i

LR3 (u, m)i

Maximize O (m r 2 e )y 1O (u 1m t 2 c )zi k k ik j i jA ij ij
k[K j[J2A

subject to

(W ) O p y 1O g z < bi k ik j ij i
k[K j[J2A

(CV ) O t z < q y , ;k [Ki jk ij k ik 2A
j[Jk

(L1 ) z < y , ; j [ J , k [Ki ij ik k 2A

(L2 ) O z > y , ;k [Ki ij ik 2A
j[Jk

(I1 ) z [ h0, 1j , ; j [ Ji ij
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(I2 ) y [ h0, 1j , ;k [Ki ik 2A

The Lagrangean dual is a maximization over multipliers u and m :

LR35maxhV(LR3(u, m))u(u), m > 0j

The optimal value of Lagrangean dual LR3 and the corresponding multipliers are
computed iteratively with a subgradient-like method that is outlined below:

0 0Initialization: Set multipliers u , m either to zero or to values that give a goodj i

LR3 at the first iteration. We use as initial multipliers the optimal dual variables
corresponding to the dualized constraints of the LP relaxation of (DSP1).

Iterative procedure: Execute subgradient iterations until certain termination
criteria are satisfied. The l-th subgradient consists of the following steps:

¯ ¯• Solve subproblems LR3 (u, m) for each i [ I. Let (y , z ) be the optimal solutioni ik ij

of LR3(u, m).
l l l l• Compute modified subgradient vectors U 5 hU j , M 5 hM j of Camerinij ; j[J i ;i[I

et al. [8] as follows:

l l l l21 l l l l21U 5 (U )91b U , j [ J , M 5 (M )91b M , i [ Ij j u j i i m i

where

l l¯ ¯ ¯(U )95 12O z , ; j [ J , (M )95 d 2 O t z 2 O r y , ;i [ Ij ij i i jA ij k ik
i[I j[J k[KA 2A

land b , for subgradient vector U is:u

l21 lU V l21 l]]]21.5 if U U , 0l l21 2b 5 iU iu 5
0 otherwise

l
b for subgradient vector M is defined in a similar manner.m

• Multipliers u are unrestricted in sign and multipliers m must be nonnegative. They
are adjusted as follows:

l l21 l l l l21 lu 5 u 1u U , m 5maxh0, (m 1u M )jj j u j i i m i

l lSeparate stepsizes u and u are used for the u and m multipliers, respectively,u m

because the magnitudes of U and M subgradients are much different. Using
separate stepsizes promises faster convergence of the algorithm, as computational

l levidence suggests (see Afentakis and Gavish [1]). Stepsizes u and u are:u m
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l21 l21 l21 l21T 2V(LR3(u , m )) T 2V(LR3(u , m ))l l l l]]]]]]] ]]]]]]]u 5s , u 5su 2 m 2iU i iMi

kwhere 0,s , 2 and T is a target computed as the average of the current lower
bound and the value of the best known feasible solution of (DSP1).

The fourth Lagrangean Relaxation LR4 is obtained if we relax constraints (S) with
multipliers u , ; j [ J. The resulting Lagrangean subproblem decomposes into Ij

independent 0-1 multi-knapsack subproblems with logical constraints that are
strengthened to Setup Multiknapsacks by appending constraints (L2). These are
harder to solve than the ones of LR3, because they have one extra constraint.

5.2. LAGRANGEAN SUBSTITUTION LS

9 9We introduce copies z , y of variables z , y , and append the following aggregateij ik ij ik

copy constraints to the augmented (DSP1) model:

9 9(ACO) O p y 1O g z 5 O p y 1O g zk ik j ij k ik j ij
k[K j[J k[K j[J2A 2A

We also duplicate constraints (L1) as (L19) and write constraints (W ), (CV ) and
(VV ) as (W9), (CV 9) and (VV 9) in the copy variables. We dualize constraints (ACO)
with multipliers u , thus obtaining Lagrangean Substitution LS(u) that decomposesi

as follows:

1 2V(LS(u))5V(LS (u))2O V(LS (u))i
i[I

1where LS (u) is a minimization problem in the original z , y variables:ij ik

1LS (u)

Minimize O O (e 1 u p )y 1O O (c 1 u g )zk i k ik ij i j ij
i[I k[K i[I j[J2A

subject to

(S) O z 5 1 , ; j [ Jij
i[I

(L1) z < y , ;i [ I, k [K , j [ Jij ik 2A

(I1) z [ h0, 1j , ;i [ I, j [ Jij

(I2) y [ h0, 1j , ;i [ I, k [Kik 2A

2 9 9and LS (u) is a maximization problem for each vehicle i [ I in the copy z , yi ij ik

variables, that has a Setup Multiknapsack structure. After appending constraints (L2)
2to it, LS (u) is:i
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2LS (u)i

9 9Maximize O u p y 1O u g zi k ik i j ij
k[K j[J2A

subject to

9 9 9(W ) O p y 1O g z < bi k ik j ij i
k[K j[J2A

9 9 9(CV ) O t z < q y , ;k [Ki jk ij k ik 2A
j[Jk

9 9 9(L1 ) z < y , ; j [ J , k [Ki ij ik k 2A

9 9 9(L2 ) O z > y , ;k [Ki ij ik 2A
j[Jk

9 9 9(VV ) O r y 1 O t z < di k ik jA ij i
k[K j[J2A A

9 9(I1 ) z [ h0, 1j , ; j [ Ji ij

9 9(I2 ) y [ h0, 1j , ;k [Ki ik 2A

The Lagrangean dual is a maximization over multipliers u:

LS 5maxhV(LS(u))u(u)j

and is optimized with a subgradient procedure adapted from the one for solving LR3
as follows:

• LS multipliers u are unrestricted in sign and get their initial values from thei

optimal values of the dual variables of constraints (ACO) in the LP relaxation of
the expanded (DSP1) model.

1 2• Lagrangean subproblems are LS (u) and LS (u) for each i [ I.i
l l• Modified subgradient vectors U 5 hU j of Camerini et al. [8] are based oni ;i[I

constraints (ACO).

5.3. LAGRANGEAN DECOMPOSITION LD

9 9We introduce copies z , y of variables z , y , and append the following copyij ik ik ik

constraints to the augmented (DSP1) model:

9(CZ) z 5 zij ij

9(CY) y 5 yik ik

We also duplicate constraints (L1) as (L19) and write constraints (W ), (CV ) and
(VV ) as (W9), (CV 9) and (VV 9) in the copy variables. We dualize constraints (CZ)
with multipliers v and constraints (CY) with multipliers u thus obtainingij ik

Lagrangean Decomposition LD(u, v) that decomposes as follows:
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1 2V(LD(u, v))5V(LD (u, v))2O V(LD (u, v))i
i[I

1where LD (u, v) is a minimization problem in the original z , y variables:ij ik

1LD (u, v)

Minimize O O (e 1 u )y 1O O (c 1 v )zk ik ik ij ij ij
i[I k[K i[I j[J2A

subject to

(S) O z 5 1 , ; j [ Jij
i[I

(L1) z < y , ;i [ I, k [K , j [ Jij ik 2A

(I1) z [ h0, 1j , ;i [ I, j [ Jij

(I2) y [ h0, 1j , ;i [ I, k [Kik 2A

2 9 9and LD (u, v) is a maximization problem for each vehicle i [ I in the copy z , yi ij ik

variables, that has a Setup Multiknapsack structure. After appending constraints (L2)
2to it, LD (u, v) is:i

2LD (u, v)i

9 9Maximize O u y 1O v zik ik ij ij
k[K j[J2A

subject to

9 9 9(W ) O p y 1O g z < bi k ik j ij i
k[K j[J2A

9 9 9(CV ) O t z < q y , ;k [Ki jk ij k ik 2A
j[Jk

9 9 9(L1 ) z < y , ; j [ J , k [Ki ij ik k 2A

9 9 9(L2 ) O z > y , ;k [Ki ij ik 2A
j[Jk

9 9 9(VV ) O r y 1 O t z < di k ik jA ij i
k[K j[J2A A

9 9(I1 ) z [ h0, 1j , ; j [ Ji ij

9 9(I2 ) y [ h0, 1j , ;k [Ki ik 2A

The Lagrangean dual is a maximization over multipliers u:

LD 5maxhV(LD(u, v))u(u), (v)j

and is optimized with a subgradient procedure adapted from the one for solving LR3
as follows:

• LD multipliers u and v are unrestricted in sign and get as their initial values theik ij
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optimal dual variables of constraints (CY) and (CZ) in the LP relaxation of the
expanded (DSP1) model.

1 2• Lagrangean subproblems are LD (u, v) and LD (u, v) for each i [ I.i
l l l l• Modified subgradient vectors U 5 hU j and V 5 hV j ofik ;i[I,k[K ij ;i[I, j[J2A

Camerini et al. [8] are based on constraints (CV ) and (CZ).

5.4. LAGRANGEAN HEURISTIC

We developed a simple Lagrangean heuristic that finds feasible solutions from the
possibly infeasible Lagrangean ones. We set y to optimal Lagrangean values, andik

solve a reduced (DSP1), in the remaining free z vaiables only, to optimality. If forij

all i [ I and k [K y is 0, then, unless no customer order has refrigerated or2A ik

frozen items, no feasible solution can be found. In this case, y for all i and k areik

set to 1. The heuristic is applied at each subgradient iteration. However, it is not
guaranteed to find a feasible solution at each subgradient iteration. If a solution is
found, boxes for non-ambient temperature items are possibly added on a vehicle
while no customers having ordered the corresponding item types are assigned to the
vehicle. In this case, the feasible solution is improved by removing these boxes from
the vehicle and subtracting their cooling costs from the feasible solution value.

Lagrangean Relaxations LR1 through LR4 provide only one set of y optimalik

Lagrangean values, therefore only one feasible solution can be obtained with the
9above heuristic based on these schemes. LS and LD provide two sets of y and yik ik

optimal Lagrangean values, therefore repeated application of the heuristic for each
set can yield two feasible solutions at each subgradient iteration.

6. Computational experience with the Lagrangean approximations of (DSP1)

Subgradient procedures for all Lagrangean schemes based on (DSP1) were
implemented in GAMS and tested on a Hewlett-Packard J2240 workstation with

0CPLEX 6.5. We used an initial subgradient step size factor s 5 2 that was halved
every 25 iterations, if the best lower bound found failed to improve in each one of
them. For all problems except for Large we could obtain the optimal solution,
therefore we used it as the value of the best known feasible solution in the
calculation of the upper bound; for Large, we used the best solution found. As initial
Lagrangean multipliers we used the optimal dual prices of the appropriate
constraints of the linear programming relaxation of the model.

Table 10 shows, for the random problems and the small real ones, the lower
bounds obtained after 10 subgradient iterations with each of the Lagrangean
bounding schemes, the feasible solutions obtained with the corresponding heuristic
and the CPU times of each run. For Large, results are shown after 100 subgradient
iterations. Numbers of random problems are the same as earlier in the article. CPU
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Table 10. Comparison of lower bounds, feasible solutions and computation times

Random Lower bounds
prob.

LP LR1 LR2 LR3 LR4 LS LD

1 424.257 424.257 424.257 424.257 424.257 424.257 424.257
2 421.064 421.064 421.064 421.101 421.468 419.198 421.064
3 447.297 447.297 447.297 450.088 447.963 426.176 447.297
4 464.615 464.615 464.615 466.061 474.753 421.755 465.552
5 494.965 494.965 494.654 514.890 515.600 409.016 495.502
6 440.933 440.933 440.933 444.492 440.933 429.856 440.933
7 456.785 456.785 456.785 457.957 456.785 425.413 456.785
9 434.880 434.880 434.880 438.577 437.118 423.726 434.879

10 448.061 448.061 448.061 450.999 448.061 422.748 448.061
11 501.602 501.602 501.602 508.925 502.561 459.272 501.816
12 242.013 242.013 242.013 242.388 243.308 241.794 242.013
13 318.950 318.950 318.950 318.950 318.950 318.045 318.045
15 561.069 561.069 561.069 566.238 561.069 492.663 561.069
16 672.122 672.121 672.121 677.918 672.122 548.237 672.122
17 780.654 780.654 780.654 787.410 780.740 591.409 780.654

Real 1 161.729 161.729 161.729 161.729 161.729 152.293 161.729
Real 2 161.729 161.729 161.729 161.729 161.729 157.717 161.729
Real 3 247.934 249.064 257.262 247.934 267.424 219.455 247.934

Large 997.485 1047.770 1048.522 1035.730 1118.463 1093.200 904.960

Opt. Feasible solutions with Lagrangean heuristic

1 424.257 468.481 468.481 468.481 468.481 424.257 468.481
2 421.765 421.765 421.765 421.765 421.765 421.765 421.765
3 468.950 487.466 605.263 468.950 468.950 487.466 477.746
4 480.852 480.852 615.119 697.136 550.133 494.339 494.339
5 551.929 551.929 609.413 825.776 618.322 601.493 569.134
6 475.023 475.023 559.185 475.023 475.023 519.126 503.085
7 466.214 481.357 624.018 466.214 466.214 511.356 466.214
9 467.073 539.389 467.073 539.389 467.073 538.690 467.073

10 483.666 486.206 519.794 486.206 486.206 578.626 483.666
11 548.379 548.379 548.379 3066.76 3066.76 568.88 548.379
12 243.766 243.766 243.766 250.803 243.766 243.766 243.766
13 318.950 2767.53 2767.53 2767.53 2767.53 318.950 2767.53
15 616.141 637.466 616.141 3267.53 749.635 637.466 618.950
16 746.141 943.766 897.472 3517.53 808.248 808.248 767.167
17 876.141 937.466 1077.47 3767.53 1143.77 937.466 3767.53
Real 1 164.444 164.444 164.444 164.444 164.444 164.444 164.444
Real 2 164.444 164.444 164.444 164.444 164.444 164.444 164.444
Real 3 295.378 1034.90 1034.90 1034.90 1034.90 1034.90 1034.90

Large 1190.578 N/A N/A N/A 1218.956 N/A N/A

times of Lagrangean schemes are often greater than that required to solve a problem
to optimality, except for Large.

LR1 and LR2 give lower bounds that are as good as the linear programming
bound, although their subproblems do not have the integrality property. LR3 and
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Table 10. Continued

HP J2240 CPU seconds

1 0.03 0.55 0.80 0.80 0.80 0.12 1.25
2 0.04 1.09 1.11 1.32 1.30 2.28 2.11
3 0.27 1.22 1.30 1.48 1.50 4.51 2.62
4 1.06 1.25 1.75 2.00 1.74 4.17 4.00
5 1.92 0.96 2.98 0.42 5.50 5.93 3.96
6 0.32 0.84 1.14 1.66 1.44 2.33 1.18
7 0.30 0.99 1.21 0.76 1.60 3.80 2.33
9 0.22 1.32 1.49 1.72 1.55 2.94 2.35

10 0.38 1.37 1.35 1.63 1.68 4.88 2.48
11 0.59 1.38 1.79 1.80 2.00 7.48 1.60
12 0.07 1.10 1.37 1.36 1.35 5.87 2.17
13 0.05 1.30 1.30 1.31 1.30 11.39 1.91
15 0.40 1.17 1.67 1.70 0.85 6.02 2.59
16 0.41 1.23 1.70 0.59 2.26 5.58 1.92
17 0.46 1.37 1.73 1.80 1.46 6.42 5.59

Real 1 0.09 2.11 2.85 1.96 2.66 6.02 4.99
Real 2 0.08 2.44 2.76 1.66 2.04 4.88 4.17
Real 3 0.96 3.67 7.11 2.86 5.79 9.78 10.35

Large .100 K 775.75 3846.19 826.15 2046.51 4992.08 18790.35

LR4 yield improved bounds but their CPU times are higher too. LS yields the worst
bounds of all schemes, primarily because the optimal dual LP variables do not give
a good starting bound. LD gives the linear programming bound in most cases, but
this is expected given that the number of subgradient iterations is small and that the
subgradient algorithm for LD converges slowly due to the large number of
multipliers. The heuristic gives very good solutions for the random and small real
problems; in most cases it finds the optimal solution at the first 10 subgradient
iterations. Large is a little harder to solve; only coupled with LR4 did the heuristic
give a feasible solution for this instance, albeit a good one and within a reasonable
CPU time.

7. Conclusions

In this article we present two models for scheduling deliveries in vehicles with
multiple compartments. Unlike the standard vehicle routing problem that can be
solved by generalized assignment heuristics, in deliveries with multiple compart-
ments both weight and volume limitations should be considered, the former for the
whole vehicle and the latter for both the vehicle and each compartment. A useful
characteristic of the models is that they find the minimal number of vehicles
required for a feasible delivery schedule. Very interesting computational and
modeling features of the models were explored with experiments using randomly
generated and real data.
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Preliminary experiments with several Lagrangean Relaxations, a Substitution and
a Decomposition of the first model have revealed tradeoffs between tightness of
obtained bounds and computation times. We have seen that keeping and not relaxing
the compartment volume capacity constraints improves the lower bounds by much,
at least in our data sets. Also, a heuristic based on these schemes can give very good
feasible solutions.

The models proposed here are far from capturing all complexities of a real
application. In the case of deliveries to convenience stores such complexities can be
the following: (i) By law, a driver cannot work more than a certain number of hours
each day, thus there is a limit to the duration of trips. (ii) Travel times between stops
are not known a priori, but depend on traffic, weather conditions, etc. Unloading
times at each customer’s location are also not known a priori. (iii) Customers
require that deliveries are done within certain time windows. Addressing these
complexities could be the subject of a future study.

Appendix A. Generating random test problems

The procedure we used in generating random test problems was adapted from Fisher
and Jaikumar [24] to incorporate different item types and compartments. It consists
of the following steps:
• Set random problem parameters: Specify random number generator seed, number

of customers, number of vehicles, their (equal) weight and volume capacities,
number of compartments, their weight and volume, as well as volume capacities,
maximum and minimum distance of customers from the depot, customers whose
order consists of items of all three types as a fraction of the total number of
customers.

• Randomly generate locations for customers in polar coordinates, setting the depot
at the origin.

• Randomly generate an order for each customer, indicating the type of items
(frozen, refrigerated, ambient temperature) that it consists of, as well as the
aggregate weight and volume of each item type.

• Set seed points and compute delivery costs based on the locations of customers
and the depot.
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